QUE ES LA NANOTECNOLOGIA







La palabra "nanotecnología" es usada extensivamente para definir las ciencias y técnicas que se aplican al un nivel de nanoescala, esto es unas medidas extremadamente pequeñas "nanos" que permiten trabajar y manipular las estructuras moleculares y sus átomos. En síntesis nos llevaría a la posibilidad de fabricar materiales y máquinas a partir del reordenamiento de átomos y moléculas. El desarrollo de esta disciplina se produce a partir de las propuestas de Richard Feynman. La mejor definición de Nanotecnología que hemos encontrado es esta: La nanotecnologia es el estudio, diseño, creación, síntesis, manipulación y aplicación de materiales, aparatos y sistemas funcionales a través del control de la materia a nano escala, y la explotación de fenómenos y propiedades de la materia a nano escala. Cuando se manipula la materia a la escala tan minúscula de átomos y moléculas, demuestra fenómenos y propiedades totalmente nuevas. Por lo tanto, científicos utilizan la nanotecnología para crear materiales, aparatos y sistemas novedosos y poco costosos con propiedades únicas


Celulares y nanotecnología


Es relevante el proyecto Nokia Morph, desarrollado por el Nokia Research Center(NRC) y la Universidad de Cambridge, en el Reino Unido. Morph muestra cómo el futuro de los dispositivos móviles se basa, entre otros aspectos, en hacer que los dispositivos sean "para usar" con una gran versatilidad. Esto demuestra la funcionalidad que la nanotecnología puede ser capaz de entregar: materiales flexibles, electrónica transparente y superficies auto-limpieza.

Los cuatro factores críticos de la telefonía celular: sistemas operativos, energía, visualización y conectividad se ven reflejados en este desarrollo experimental que puede pensarse, como "una luz al final del túnel" para el fin de la década.




Investigación actual[editar]


Representación gráfica de unrotaxano, útil como un interruptor molecular.

Este tetraedro de ADN28 es una nanoestructura diseñada artificialmente del tipo construida en el campo de lananotecnología de ADN. Cada borde del tetraedro es una doble hélice de par base de ADN, y cada vértice es un unión de tres brazos.

Este dispositivo transfiere energía desde capas de grosor nano de lospozos cuánticos a los nanocristalesubicados arriba, causando que los nanocristales emitan luz visible.29

Nanomateriales[editar]

El campo de los nanomateriales incluye los subcampos que desarrollan o estudian los materiales que tienen propiedades únicas que surgen de sus dimensiones a nanoescala.30
  • La ciencia de Interfaz y coloide ha identificado muchos materiales que pueden ser útiles en la nanotecnología, tales como los nanotubos de carbono y otros fullerenos, y varias nanopartículas y nanoroides. Los nanomateriales con rápido transporte de ionestambién están relacionados a la nanoiónica y a la nanoelectrónica.
  • Los materiales a nanoescala también puede ser usados para aplicaciones en volumen; la mayoría de las aplicaciones comerciales actuales de la nanotecnología son de este tipo.
  • Se ha realizado progreso en la utilización de estos materiales para aplicaciones médicas, ver nanomedicina.
  • Los materiales a nanoescala tales como los nanopilarres algunas veces son usados en las celdas solares para bajar los costos de las celdas solares de silicio tradicionales.
  • El desarrollo de aplicaciones que incorporan nanopartículas semiconductoras que serán usadas en la siguiente generación de productos, tales como tecnología de pantallas, iluminación, celdas solares e imágenes biológicas; ver punto cuántico.

Acercamientos desde el fondo hacia arriba[editar]

Estos buscan disponer los componentes más pequeños en estructuras más complejas.
  • La nanotecnología de ADN utiliza la especificidad del pareo de base de Watson–Crick para construir estructuras bien definidas a partir del ADN y otros ácidos nucleicos.
  • Se aproxima desde el campo de la síntesis química "clásica" (síntesis inorgánica y orgánica) y también su objetivo es el diseño de moléculas con una forma bien definida (por ejemplo bis-péptidos31 ).
  • Más generalmente, el autoensamblaje molecular busca usar los conceptos de química supramolecular y el reconocimiento molecular en particular, para causar que componentes uni-moleculares se dispongan automáticamente por sí mismos en alguna conformación útil.
  • Las puntas de los microscopios de fuerza atómica pueden ser usadas como una "cabeza de escritura" a nanoescala para depositar un químico sobre una superficie en un patrón deseado en un proceso conocido como nanolitografía dip-pen. Esta técnica cae en el subcampo más grande de la nanolitografía.

Acercamientos desde arriba hacia abajo[editar]

Estos buscan crear dispositivos más pequeños usando unos más grandes para controlar su ensamblaje.
  • Muchas tecnologías que trazan su origen a los métodos de estado sólido de silicio para fabricar microprocesadores ahora son capaces de crear características más pequeñas que 100 nm, lo cae en la definición de nanotecnología. Discos duros basados en lamagnetorresistencia gigante ya en el mercado caen dentro de esta descripción,32 así como las técnicas de deposición de capas atómicas (en inglés: Atomic Layer Deposition, ALD). Peter Grünberg y Albert Fert recibieron un Premio Nobel en Física en el año 2007 por su descubrimiento de la magnetorresitencia gigante y sus contribuciones al campo de la espintrónica.33
  • Las técnicas de estado sólido también pueden ser usadas para crear dispositivos conocidos como sistemas nanoelectromecánicos(en inglés: Nanoelectromechanical Systems, NEMS), que están relacionados a los sistemas microelectromecánicos (en inglés: Microelectromechanical Systems, MEMS).
  • Haz iónico concentrado pueden ser controlados para remover material o incluso depositar material cuando gases precursores adecuados son aplicados al mismo tiempo. Por ejemplo, esta técnica es usada rutinariamente para crear secciones de material sub-100 nm para el análisis mediante microscopios electrónicos de transmisión.
  • Las puntas de los microscopios de fuerza atómica pueden ser usados como una "cabeza escritora" de nanoescala para depositar una resistencia, que luego es seguida por un proceso de aguafuerte para remover el material en un método arriba-abajo.

Acercamientos funcionales[editar]

Estas buscan desarrollar componentes de una funcionalidad deseada sin importar como ellas podrían ser ensambladas.

Acercamientos biomiméticos[editar]

Especulativos[editar]

Estos subcampos buscan anticipar lo que las invenciones nanotecnológicas podrían alcanzar o intentan proponer una agenda que ordene un camino por el cual la investigación pueda progresar. A menudo estos toman una visión de una gran escala de la nanotecnología, con más énfasis en sus implicancias sociales que en los detalles de como tales invenciones podrían realmente ser creadas.
  • La nanotecnología molecular es propuesta como un acercamiento que involucra la manipulación de una sola molécula de una forma finamente controlado y determinista. Esto es más teórico que otros subcampos, y muchas de las técnicas propuestas están más allá de las capacidades actuales.
  • La nanorrobótica se centra en máquinas autosuficientes con alguna funcionalidad operando a nanoescala. Existen esperanzas para aplicar los nanorobots en medicina,37 3839 pero pueden no ser tan fácil hacer tal cosa debido a severas desventajas de tales dispositivos.40 Sin embargo, se ha demostrado progreso en materiales y metodologías innovadores con algunas patentes otorgadas para nuevos dispositivos nanofabricadores para futuras aplicaciones comerciales, que también ayudan progresivamente hacia el desarrollo de nanorobots con algún uso de conceptos de nanobioelectrónica embebida.41 42
  • Los nanosistemas productivos son "sistemas de nanosistemas" que serán complejos nanosistemas que producen partes atómicamente precisas para otros nanosistemas, no necesariamente utilizando noveles propiedades nanoescalares emergentes, sino que bien comprendidos fundamentos de la fabricación. Debido a la naturaleza discreta (a nivel atómico) de la materia y la posibilidad del crecimiento exponencial, esta etapa es vista como la base de otra revolución industrialMihail Roco, uno de los arquitectos de la Iniciativa Nanotecnológica Nacional de Estados Unidos, ha propuesto cuatro estados de la nanotecnología que parecen ser un paralelo del progreso técnico de la Revolución Industrial, progresando desde nanoestructuras pasivas a nanodispositivos activos a complejas nanomáquinas y finalmente a nanosistemas productivos.43
  • La materia programable busca diseñar materiales cuyas propiedades puedan ser fácilmente, reversiblemente y externamente controlados pensada como una fusión entre laciencia de la información y la ciencia de los materiales.
  • Debido a la popularidad y exposición mediática del término nanotecnología, las palabras picotecnología y femtotecnología han sido acuñados en forma análoga, aunque estos son raramente utilizados y solo de manera informal.

Herramientas y técnicas[editar]


Típica configuración de un microscopio de fuerza atómica. Un voladizo microfabricado con una punta aguda es desviado por las características de una superficie de muestra, de forma similar a un fonógrafopero a una escala mucho más pequeña. Un haz láserse refleja en la parte trasera del voladizo en un conjunto de fotodetectores, permitiendo que el desvío sea medido y que se arme en una imagen de la superficie.
Existen varios importantes desarrollos modernos. El microscopio de fuerza atómica (en inglés: Atomic Force Microscope, AFM) y el microscopio de efecto túnel (en inglés: Scanning Tunneling Microscope, STM) son versiones tempranas de las sondas de barrido que lanzaron la nanotecnología. Existen otros tipos de microscopio de sonda de barrido. Aunque conceptualmente similares a los microscopios confocales de barrido desarrollados por Marvin Minsky en el año 1961 y almicroscopio acústico de barrido (en inglés: Scanning Acoustic Microscope, SAM) desarrollado por Calvin Quate y asociados en la década de 1970, los microscopios de sonda de barrido más nuevos tienen una mucho más alta resolución, dado que ellos no están limitados por la longitud de onda del sonido o la luz.
La punta de una sonda de barrido también puede ser usada para manipular nanoestructuras (un proceso conocido como ensamblaje posicional). La metodología de barrido orientado a la característica sugerida por Rostislav Lapshin parece ser una forma prometedora de implementar estas nanomanipulaciones en modo automático.44 45 Sin embargo, esto es aún un proceso lento debido a la baja velocidad de barrido del microscopio.
Varias técnicas de nanolitografía tales como la litografía óptica, la nanolitografía dip-pen de litografía de rayos X, la litografía de haz de electrones o litografía de nanoimpresión también fueron desarrolladas. La litografía es una técnica de fabricación desde arriba hacia abajo donde el material en bruto es reducido en tamaño hasta lograr un patrón a nanoescala.
Otro grupo de técnicas nanotecnológicas incluyen a aquellas usadas para la fabricación de nanotubos y nanoalambres, aquellas usadas en la fabricación de semiconductores tales como la litografía ultravioleta profunda, la litografía de haz de electrones, maquinado de haz de iones enfocado, la litografía de nanoimpresión, la deposición de capa atómica y deposición molecular de vapor , y además incluyendo las técnicas de autoensamblaje molecular tales como aquellas que empleancopolímeros di-bloque. Los precursores de estas técnicas son anteriores a la era de la nanotecnología, y son extensiones en el desarrollo de los avances científicos más que técnicas que fueron ideadas únicamente con el propósito de crear nanotecnología y que fueron el resultado de la investigación nanotecnológica.
El acercamiento de arriba hacia bajo anticipa nanodispositivos que deben ser construidos pieza por pieza en etapas, de la misma forma que son fabricados el resto de las cosas. La microscopia de sonda de barrido es una importante técnica tanto para la caracterización como para la síntesis de nanomateriales. Los microscopios de fuerza atómica y los microscopios de efecto túnel de barrido pueden ser usados para examinar las superficies y para mover los átomos en ellas. Al diseñar diferentes puntas para estos microscopios, ellos pueden ser usados para tallar estructuras en la superficies y para ayudar a guiar las estructuras autoensambladas. Al utilizar, por ejemplo, el acercamiento de barrido orientado a las características, los átomos o moléculas pueden ser movidos en la superficie con las técnicas del microscopio de sonda de barrido.44 45 Actualmente, es caro y demoroso para ser utilizados en la producción en masa pero son muy adecuadas para la experimentación en un laboratorio.
En contraste, las técnicas de abajo hacia arriba construyen o hace crecer estructuras más grandes átomo por átomo o molécula por molécula. Estas técnicas incluyen síntesis química, autoensamblaje y ensamblaje posicional. La interferometría de polarización dual es una herramienta adecuada para la caracterización de películas delgadas autoensambladas. Otra variación del acercamiento desde abajo hacia arriba es la crecimiento epitaxial por haces moleculares (en inglés: Molecular Beam Epitaxy, MBE). Los investigadores de los Bell Telephone Laboratories tales como John R. Arthur, Alfred Y. Cho y Art C. Gossard desarrollaron e implementaron el MBE como una herramienta de investigación hacia finales de la década de 1960 y la década de 1970. Las muestras hechas por el MBE fueron claves para el descubrimiento del efecto Hall cuántico fraccionario por el cual el premio Nobel en Física del año 1998 fue otorgado. El MBE permite a los científicos disponer capas precisas atómicamente, y en el proceso, construir complejas estructuras. Importante para la investigaciones en semiconductores, la MBE también es usada ampliamente para hacer muestras y dispositivos para el recientemente emergente campo de la espintrónica.
Sin embargo, nuevos productos terapeúticos, basados en nanomateriales sensibles, tales como las vesículas ultradeformables y sensibles a la tensión Transfersome, que están en desarrollo y se encuentran aprobadas para uso humano en algunos países.

Inversión[editar]

Algunos países en vías de desarrollo ya destinan importantes recursos a la investigación en nanotecnología. La nanomedicina es una de las áreas que más puede contribuir al avance sostenible del Tercer Mundo, proporcionando nuevos métodos de diagnóstico y cribaje de enfermedades, mejores sistemas para la administración de fármacos y herramientas para la monitorización de algunos parámetros biológicos.
Alrededor de cuarenta laboratorios en todo el mundo canalizan grandes cantidades de dinero para la investigación en nanotecnología. Unas trescientas empresas tienen el término “nano” en su nombre, aunque todavía hay muy pocos productos en el mercado.[cita requerida]
Algunos gigantes del mundo informático como IBMHewlett-Packard ('HP)' NEC e Intel están invirtiendo millones de dólares al año en el tema. Los gobiernos del llamado Primer Mundo también se han tomado el tema muy en serio, con el claro liderazgo del gobierno estadounidense, que dedica cientos millones de dólares a su National Nanotechnology Initiative.
En España, los científicos hablan de “nanopresupuestos”. Pero el interés crece, ya que ha habido algunos congresos sobre el tema: en Sevilla, en la Fundación San Telmo, sobre oportunidades de inversión, y en Madrid, con una reunión entre responsables de centros de nanotecnología de FranciaAlemania y Reino Unido en la Universidad Autónoma de Madrid.
Las industrias tradicionales podrán beneficiarse de la nanotecnología para mejorar su competitividad en sectores habituales, como textil, alimentación, calzado, automoción, construcción y salud. Lo que se pretende es que las empresas pertenecientes a sectores tradicionales incorporen y apliquen la nanotecnología en sus procesos con el fin de contribuir a la sostenibilidad del empleo. Actualmente la cifra en uso cotidiano es del 0.2 %. Con la ayuda de programas de acceso a la nanotecnología se prevé que en 2014 sea del 17 % en el uso y la producción manufacturera.

Ensamblaje interdisciplinario[editar]

La característica fundamental de nanotecnología es que constituye un ensamblaje interdisciplinar de varios campos de las ciencias naturales que están altamente especializados. Por tanto, los físicos juegan un importante rol no solo en la construcción del microscopio usado para investigar tales fenómenos sino también sobre todas lasleyes de la mecánica cuántica. Alcanzar la estructura del material deseado y las configuraciones de ciertos átomos hacen jugar a la química un papel importante. En medicina, el desarrollo específico dirigido a nanopartículas promete ayuda al tratamiento de ciertas enfermedades. Aquí, la ciencia ha alcanzado un punto en el que las fronteras que separan las diferentes disciplinas han empezado a diluirse, y es precisamente por esa razón por la que la nanotecnología también se refiere a ser una tecnología convergente.
Una posible lista de ciencias involucradas sería la siguiente:

Nanotecnología avanzada[editar]

La nanotecnología avanzada, a veces también llamada fabricación molecular, es un término dado al concepto de ingeniería de nanosistemas (máquinas a escala nanométrica) operando a escala molecular. Se basa en que los productos manufacturados se realizan a partir de átomos. Las propiedades de estos productos dependen de cómo estén esos átomos dispuestos. Así por ejemplo, si reubicamos los átomos del grafito (compuesto por carbono, principalmente) de la mina del lápiz podemos hacer diamantes (carbono puro cristalizado). Si reubicamos los átomos de la arena (compuesta básicamente por sílice) y agregamos algunos elementos extras se hacen los chips de un ordenador.
A partir de los incontables ejemplos encontrados en la biología se sabe que miles de millones de años de retroalimentación evolucionada puede producir máquinas biológicas sofisticadas y estocásticamente optimizadas. Se tiene la esperanza que los desarrollos en nanotecnología harán posible su construcción a través de algunos significados más cortos, quizás usando principios biomiméticos. Sin embargo, K. Eric Drexler y otros investigadores han propuesto que la nanotecnología avanzada, aunque quizá inicialmente implementada a través de principios miméticos, finalmente podría estar basada en los principios de la ingeniería mecánica.
Determinar un conjunto de caminos a seguir para el desarrollo de la nanotecnología molecular es un objetivo para el proyecto sobre el mapa de la tecnología liderado porInstituto Memorial Battelle (el jefe de varios laboratorios nacionales de EEUU) y del Foresigth Institute. Ese mapa debería estar completado a finales de 2006.

Futuras aplicaciones[editar]

Según un informe de un grupo de investigadores de la Universidad de Toronto, en Canadá, las quince aplicaciones más prometedoras de la nanotecnología son:[cita requerida]
  • Almacenamiento, producción y conversión de energía.
  • Armamento y sistemas de defensa.
  • Producción agrícola.
  • Tratamiento y remediación de aguas.
  • Diagnóstico y cribaje de enfermedades.
  • Sistemas de administración de fármacos.
  • Procesamiento de alimentos.
  • Remediación de la contaminación atmosférica.
  • Construcción.
  • Monitorización de la salud.
  • Detección y control de plagas.
  • Control de desnutrición en lugares pobres.
  • Informática.
  • Alimentos transgénicos.
  • Cambios térmicos moleculares (Nanotermología).

Aplicaciones actuales[editar]

Nanotecnología aplicada al envasado de alimentos[editar]

La conservación de los alimentos es una idea que viene desde los inicios de la historia humana. A partir de la edad prehistórica, la necesidad de mejorar la preservación del alimento mediante diferentes técnicas ha sido un característica del comportamiento humano. Fermentación, salinización, secado al sol, rostización, curado, irradiación, carbonación y la adición de preservantes químicos y físicos, se han desarrollado desde el incio de la humanidad. Todos estos métodos tienen la misma idea central. Evidencia arqueológica soporta la idea que las técnicas de preservación fueron desarrolladas en las civilizaciones Greca, Romana y Egipcia. Sin embargo, los diversos métodos presentan el desafío de mantener las condiciones originales por periodos de tiempo prolongados.
Los métodos de envasado de alimentos tienen como objetivo asegurar la calidad de los alimentos para que permanezcan con sus propiedades de manera intacta. Los principales envases tienen como objetivo entregar protección física con el propósito de prevenir la contaminación de los alimentos con otros alimentos o con microorganismos.Los materiales de envasado están confeccionados preferentemente de materiales biodegradables, con el propósito de reducir la contaminación medioambiental. Esta idea se ha llevado a cabo gracias a la introducción de la nanotecnología.
Una de las aplicaciones de la nanotecnología en el campo de envases para alimentación es la aplicación de materiales aditivados con nanoarcillas, que mejoren las propiedades mecánicas, térmicas, barrera a los gases, entre otras; de los materiales de envasado. En el caso de mejora de la barrera a los gases, las nanoarcillas crean un recorrido tortuoso para la difusión de las moléculas gaseosas, lo cual permite conseguir una barrera similar con espesores inferiores, reduciendo así los costos asociados a los materiales.
Los procesos de incorporación de las nanopartículas se pueden realizar mediante extrusión o por recubrimiento, y los parámetros a controlar en el proceso de aditivación de los materiales son: la dispersión nanopartículas, la interacción de las nanopartículas con la matriz, las agregaciones que puedan tener lugar entre las nanopartículas y la cantidad de nanopartículas incorporada.
Los nanosensores ayudan a detectar cualquier cambio en el color de los alimentos y ayuda a la detección de gases dentro del producto. Estos sensores son usualmente sensibles a gases como el hidrógeno, sulfuro de hidrógeno, óxido de nitrógeno, dióxido de sulfuro y amonio. Los nanosensores son dispositivos que procesan datos capaces de detectar cambios a nivel de luz, calor, humedad, gases y señales del tipo eléctricas y químicas.46 .
Las nanoemulsiones son utilizadas para producir alimentos para aderezo de ensaladas, aceites saborizantes, endulzantes y otros- Ayudan en la liberación de diferentes sabores con la estimulación que tienen relación con calor, pH, ondas de ultrasonidos. etc. Las nanoemulsiones pueden retener los sabores eficientemente y prevenir la oxidación y las reacciones enzimáticas. Las nanoemulsiones son creadas principalmente a través del compromiso de alta energía con homogenización de alta presión, métodos de ultrasonido, chorros coaxiales líquidos de alta velocidad y métodos con dispositivos de alta velocidad. De forma similar, los métodos de baja energía, compromete emulsificación de membranas, emulsificación espontánea, desplazamiento de solventes, punto de inversión de emulsiones y mediante puntos de inversión de fases. Las nanoemulsiones son creadas por dispersión de la fase liquida en una fase acuosa continua. Los componentes que son utilizados para la creación de nanoemulsiones son del tipo lipofílicos.47 .

Nanotecnología aplicada a la administración de fármacos[editar]

Dentro de las posibilidades de administración de fármacos, ha surgido la posibilidad de utilizar la nanotecnología como un sistema de liberación del principio activo. En general los vehículos utilizados para administrar un fármaco, deben ser de baja toxicidad, con propiedades óptimas para el transporte y liberación y vida media larga. Ejemplos de nanosistemas son: micelas, liposomas, dentrímeros, nanopartículas, nanotubos y bioconjugados.48 .
Las nanopartículas son partículas sólidas coloidales con un tamaño de 1 nm a 1000 nm que son utilizadas como agentes de administración de fármacos. Con esto se logra un aumento en la velocidad de disolución y el límite de saturación de la solubilidad.49 . Existe además un tipo especial llamadas, nanopartículas lipídicas sólidas (SLN). Estas nanopartículas protegen al principio activo contra la degradación química, además de generar una mayor flexibilidad en la modulación de la liberación del fármaco.50 .
Los liposomas son moléculas amfifílicas, como los fosfolípidos, que forman vesículas de membranas en bicapas que pueden llevar a vesículas. Los liposomas son estructuras esféricas formadas por una o más capas que contienen en su interior una fase acuosa. Los liposomas se han utilizado para mejorar el efecto terapéutico de fármacos muy potentes. Se considera que este sistema de distribución reduce la toxicidad.51 .
Los bioconjugados o conjugados poliméricos actúan como transportadores y como componentes biológicos (péptidos, proteínas, nucleótidos) que actúan como ligandos para efectos terapéuticos específicos o dianas. Un ejemplo de bioconjugados con los productos obtenidos de la adición de polietilenglicol (PEG) a fármacos o proteínas terapéuticas.52 .
Los dendrones o dendrímeros son nanomateriales que pueden incorporar bloques poliméricos sintéticos o componentes naturales. Su estructura factorial jerárquica presenta numerosos sitios de conjugación para cargos o motivos diana.53 .
Las nanopartículas inorgánicas son nanopartículas construidas a partir de materiales inorgánicos. Los materiales más comunes son puntos cuánticos junto con oro, plata, óxido de hierro o nanopartículas mesoporosas. Las propiedades características de cada material son el tamaño, la carga, la química de la superficie y la estructura.54 .
Uno de los primeros fármacos en nanomedicina que mostró ser seguro para la FDA fue obtenido por la encapsulaciones de doxorrubicina dentro de los liposomas. Esta nanoformulación mejoró las características farmacocinéticas y de distribución de doxorrubicina, lo que lleva a la prolongación de la vida media y generar un proceso de acumulación en el tejido tumoral.55 .
En los últimos años se han desarrollado dispositivos implantables de distribución de fármacos. La principal función de esta nueva tecnología es la administración controlada de fármaco durante varias semanas a meses, de acuerdo las necesidades terapéuticas de un paciente individual. Terapias a largo plazo pueden ayudar a mejorar el cumplimiento y la adherencia de los pacientes a los tratamientos farmacológico. Los dispositivos implantables utilizan una estrategia on demand de los agentes terapéuticos y algunas tecnologías ayudarían a controlar la liberación de manera remota, mediante radiofrecuencia, energía de ultrasonido y de campos magnéticos, se podrían activar y controlar las administraciones. A pesar del gran número de estudios reportados acerca de los dispositivos médico auto-regulados y de los esfuerzos tecnológicos, no se ha logrado probar los beneficios de este tipo de tecnologías.

Nanotecnología aplicada a la terapia del cáncer[editar]

Uno de los aspectos más desafiantes en el terapias que existen contra el cáncer, es la especificidad de los tratamientos. Esto podría conducir a reducir los efectos tóxicos que se generar luego de administrar las terapias anticancerígenas. Además de esta posibilidad, podría mejorarse la solubilidad y biodisponibilidad de fármacos que son pobremente solubles. Debido a estas necesidades, han surgido algunas investigaciones que utilizan nanotransportadores (liposomas, micelas poliméricas y nanoparticulas poliméricas) para la preparación de nuevas formulaciones que mejoran la biodisponibilidad de estos tratamientos y mejoran la distribución del fármaco anticancerígeno en el sitio del tumor. Dentro de los factores que se consideran del tipo fisicoquímicos, se encuentra el potencial Z, el tamaño de partícula, la carga catiónica de la superficie y la solubilidad.56 .

Nanotecnología aplicada a la terapia del VIH/SIDA[editar]

Los de distribución de fármacos aplicados a distribución sistémica de fármacos antivirales podría tener ventajas similares a los ejemplos exitosos en la terapia contra el cáncer. Los sistemas de liberación controlada podría aumentar la vida media de los fármacos, manteniendo concentraciones plasmáticas en niveles terapéuticos por periodos de tiempo más prolongados que tengan finalmente impactos en la eficacia de la terapia farmacológica. Adicionalmente se podría obtener un mejor perfil de seguridad que lleve una mejor adherencia de los pacientes. De manera especifica, la distribución dirigida de fármacos antivirales frente a células CD4+ y macrófagos, tanto como la distribución a órganos de difícil acceso como el cerebro, que podrían asegurar la mantención de las concentraciones a través de la generación de reservas latentes. De forma conjunta a la mejora de la terapia farmacológica, ha nacido la idea de lograr realizar terapia génica a través de la nanotecnología. Al parecer es una promisoria la terapia génica, en la cual un gen es insertado dentro de una célula para llevar a un interferencia de los proceso de infección o replicación. Existe evidencia que indica que el silenciamiento de genes podría ser una potencial herramienta para atacar los genes de interés. Se ha descrito también que podría ser posible generar vacunas que sean eficaces y seguras en contra del VIH/SIDA. Es posible utilizar antígenos encapsulados en su centro desde los cuales las células presentadoras de antígenos pueden procesar, presentar y cross-presentar antígenos a las células CD4+ y CD8+, respectivamente, o absorber antígenos en su superficie, permitiendo a las células B generar una respuesta humoral. Por otro lado, la inmunoterapia para VIH/SIDA basada en agentes virales y administración de células dendríticas autólogas generadas ex-vivo.57 .

Nanotecnología aplicada a la terapia del Alzheimer[editar]

Los métodos de tratamientos mediante nanotecnología han resultado con interesantes resultados en la terapia de la enfermedad de Alzheimer. Los fármacos usualmente disponibles para el tratamiento de la enfermedad de Alzheimer, incluyen fármacos que son inhibidores de la enzima acetilcolinesterasa, que poseen una pobre solubilidad y baja biodisponibilidad. Adicionalmente, estos fármacos poseen una incapacidad de atravesar la barrera hemato-encefálica, por lo que el mejoramiento en la distribución de estos fármacos en el sitio de acción, es desafiante a nivel de tecnológico. Las nanotecnologías incluidas son las nanopartículas poliméricas, las nanopartículas sólido - lípido, transportadores de nanoestructuras lipidas, microemulsión, nanoemulsión y cristales líquidos. Las características fisicoquímicas especiales de los fármacos disponibles para el tratamiento del Alzheimer llevan a falla terapéutica en muchos casos. Estas limitaciones se han superado, en parte, debido al desarrollo de la administración intranasal, lo cual favorece una alternativa no invasiva de la distribución del fármaco a nivel del sistema nervioso central, a través del paso por la barrera hemato-encefálica.

Nanotecnología del ADN[editar]

Las aplicaciones de la nanotecnología en la biología celular tiene como foco desafiante, la molécula de ácido desoxirribonucleico (ADN). Se han desarrollado elementos estructurales con una cierta lógica molecular para llevar a cabo acciones terapéuticas en un determinado tipo celular o tejido, llevando a una mayor especificidad y disminuyendo los efectos indeseables de las terapia convencionales. Además las nanoestructuras de ADN pueden ser utilizadas como una unión programable para la unión de fármacos, ligandos diana y otras modificaciones o sistemas como bicapas lipídicas. Por otro lado, se han desarrollado sondas de imagen con buena sensibilidad y especificidad, que se consideran mecanismos de amplificación basados en ADN y que pueden ser programados para interactuar específicamente con las secuencias de ácido ribonucleico (ARN) a nivel intraceular. Otra aplicación es la generación de estructuras de ADN que entregan un control preciso a la organización espacial intraceular, proporcionando una base para desarrollar sistemas de cuantificación a nivel subcelular.58 . Las nanoestructuras de ADN como vehículos de liberación de fármacos se ha desarrollado de manera importante en los últimos años. Para tal efecto, los oligodesoxinucleotidos CpG (ODNs) pueden gatillar una respuesta inmune innata activando los receptores tipo Toll del tipo TLR9. Dichos ODNs se han convertido en un interesante cargo terapéutico debido a que puede ser integrado directamente dentro de la nanoestructura del ADN, a través de hibridación. Se han desarrollado moléculas de ADN en forma de Y con motivos CpG que pueden gatillar una respuesta inmune aumentando la eficiencia de captación de macrófagos incrementando la respuesta inmune. Otros hallazgos han llevado a la creación de complejos de vacunas sintéticas por ensamblaje de nanoestructuras de ADN tetraedricas (TDNs) que fueron modificadas con estreptavidina y ODNs CpG. En ese caso la estreptavidina sirve como un antígeno modelo que lleva a que el constructo genere anticuerpos IgG anti-estreptavidina.59 .

No hay comentarios.:

Publicar un comentario